524Uploads
213k+Views
114k+Downloads
Design, engineering and technology
Make a trap to detect Santa
Try out this fun science experiment, designed for primary school students, to catch Santa as he delivers your presents by creating an electronic trap!
The engineering context
Engineers need to be able to understand how electrical circuits are drawn and communicated; This includes the use of circuit symbols to produce circuit diagrams and schematics. This knowledge could be used when investigating, designing or making electrical and electronic circuits in the future.
What equipment will you need?
A thin piece of sponge – a washing up sponge is great, but make sure it is completely dry, Scissors, Masking or sticky tape, Aluminium kitchen foil, 3 crocodile leads (you will need another 2 if you do the extension task), A 2 x AA battery pack, A 3V buzzer
How to do it
Step 1 - Cut a square of the thin sponge approximately 10cm x 10cm.
In the centre, cut a hole approximately 4cm in diameter.
⚠ Be careful when using scissors. Always have an adult on standby in case you need help.
Step 2 - Cut two pieces of aluminium foil slightly smaller than your piece of sponge.
Step 3 - Using masking or sticky tape, tape one piece of aluminium foil to the top of the sponge and the other to the bottom. The tin foil pieces MUST NOT touch if the sponge is not pressed down but should once it is pressed.
Step 4 - Attach one crocodile lead to the top piece of foil and one to the bottom piece.
You have now built the pressure pad for your Electronic Santa Detector, but you need to put it in a circuit for something to happen. Follow the diagram in the activity sheet below to connect the components with your crocodile leads.
When you gently press the centre, the buzzer should sound.
Now all you need to do is leave it somewhere you think Santa will stand when he delivers your presents. Just inside your bedroom door, perhaps, or at the end of your bed with your stocking.
When he steps on the pressure pad, the buzzer will sound and alert you to him being in the room.
You might also want to disguise it so it is not noticeable. Santa is old and wise, and if he sees it, he will know not to step on it!
Download the Make a trap to detect Santa activity sheet for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Naughty or nice meter
In this festive STEM graphics project, students will use a net to make a naughty or nice gauge and customise it to their own design.
This activity could be used as a main lesson to teach learners how to use nets to make useable objects. It could also be used as one of several activities within a wider scheme of learning focusing on how maths can be utilised to understand the use of nets. Nets are important as they allow 3D objects to be made when folded.
This activity is one of a series of free STEM resources designed to allow learners to use Christmas themes to support the teaching of the primary National Curriculum. They are designed to support the delivery of key topics within design and technology, and maths.
The graphics could be added by hand or using IT. The examples at the end of the presentation were made by learners using computers at home during a lesson delivered using conferencing software.
Resources required
A4 paper or thin card for handouts
Scissors
Rulers
Brass split pin fasteners
Drawing and colouring equipment
If available, the handout should be printed on a thin card, as greater rigidity improves performance.
The engineering context
Engineers use gauges to give visual displays of the amounts or levels of things. This can range from the volume control on a television to the fuel tank on a car to a temperature gauge on a machine.
Suggested learning outcomes
By the end of this activity, students will understand that gauges are used to measure things, and they will be able to make a graphic product by cutting and folding a net.
Download the Naughty or nice activity sheet for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your classroom highlights with us @IETeducation! #SantaLovesSTEM.
Magic trick
This free resource focuses on the making of a magic trick which makes a pack of cards disappear, using complex graphics products made from nets.
Magic tricks use design and mathematics to make them work effectively and this trick uses boxes that must fit together snugly to deceive the audience.
A free activity sheet and handout is available to download below.
And please do share your classroom learning highlights with us @IETeducation
Sustainable lighting design
Design and make a sustainably powered light
This fun engineering project for KS3 will allow students to embrace sustainable engineering as they learn to combine scientific principles with artistic flair to craft their unique and planet-friendly light.
This activity could be used as a main lesson to teach about the benefits of using renewable energy and how it can help solve social problems. It could also be used as part of a wider scheme of learning focussing on sustainability and the 6Rs (rethink, refuse, reduce, reuse, recycle, repair).
Approximately 1 billion people worldwide, or 15% of the total population, have no access to mains electricity. How could a lamp be powered for children living in these conditions to enable them to read and study at night?
What you will need
Hi-bright light emitting diodes (LEDs).
Block connectors with two pin connections at either end, or solder and soldering equipment.
Insulation tape.
Red and black wires or crocodile clips.
A low power DC generator/motor (a motor working in reverse acts as a generator).
Pre-made or purchased turbine blades to attach to the generator.
The engineering context
Engineers bear a social and ethical obligation to consider the environmental impact when addressing design challenges. Understanding how to generate greener energy is imperative for aspiring electrical or electronic engineers, given that the renewable energy sector is one of the rapidly expanding industries in the field of engineering.
Suggested learning outcomes
By the end of this activity, students will be able to understand what is meant by, and the need for, renewable energy. They will be able to design and make a sustainably powered light, and they will understand how wind turbines work.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Graphic project to create Christmas gift tokens
A design project to use creativity in gift making vouchers for family and friends
In this activity, learners will make a book of Christmas gift tokens, add some Christmas promises, and then give it to someone as a Christmas gift.
This is one of a series of free STEM resources designed to allow learners to use the theme of the Christmas period to develop their knowledge and skills in Mathematics, Design and Technology and Engineering.
This activity could be used as a main lesson activity to teach how to make useable objects from printed graphic designs. It could also be used as part of a wider scheme of learning focusing on graphics skills, techniques and processes.
Follow our step-by-step guide to create your very own Christmas gift tokens:
Step 1 – Using the Christmas gift token worksheet, print off the front cover and as many gift tokens as required.
Step 2 – Safely cut out the front cover and as many gift tokens as needed. Staple the front cover and gift tokens together to make a book.
Step 3 – Add your promises. You can come up with these yourself or use the list in the activity sheet.
Step 4 – Give your Christmas gift tokens to someone on Christmas day!
Download our free activity sheet for teachers’ notes and fun extension activities!
The engineering context
Cheques are used as a payment method in numerous engineering scenarios, such as paying for the installation of a new alarm system or payment for the materials needed to build a bridge.
Graphic design is key to new product creation and solving global issues.
Suggested learning outcomes
By the end of this activity, students will know the purpose of and main elements that make up a gift token, and they will be able to make a book of Christmas gift tokens and add promises to it.
Download the Christmas gift tokens activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your gift token photos with us @IETeducation! #SantaLovesSTEM.
Santa's suit replacement
Designing a sustainable high-tech replacement for Santa’s famous red suit
In this activity, learners will design a replacement for Santa’s suit that meets a series of design criteria and incorporates at least one technology to make Santa’s work easier.
This free resource will develop creativity and graphics skills in design and technology, as well as increasing understanding of how developments in technology affect our lives.
A activity sheet, presentation and template are available to download for free.
And please do share your classroom learning highlights with us @IETeducation
Super sleigh alternative
In this festive activity designed for secondary school students, learners will design a high-tech, environmentally friendly replacement for Santa’s sleigh.
The sleigh will use a sustainable method of allowing it to fly through the air to deliver the presents. This free resource will build knowledge and skills in Design and Technology and Engineering.
A activity sheet, presentation and design sheets are available to download for free.
And please do share your classroom learning highlights with us @IETeducation
Snowball catapult
Build a simple snowball catapult capable of firing cotton wool balls in this festive activity for kids.
By the end of this activity, you will be able to:
Engineer a catapult that harnesses potential energy and then releases it quickly, transferring that potential energy into movement as the snowball is fired into the distance.
How long will this activity take?
This activity will take approximately 10 minutes to complete. To extend your catapult design skills and understanding of levers, try the Build a popsicle stick catapult activity.
What equipment will you need?
9 x lollipop sticks, 2 x elastic bands, cotton wool balls
How to do it
Step 1
Stack 5 of the lollipop sticks on top of one another.
Step 2
Place the 6th lollipop stick across the stack of 5 sticks in the shape of a cross.
Step 3
Place the remaining 3 sticks on top of the ‘cross’ stick, like the first 5 lollipop sticks.
Step 4
Wrap the elastic bands tightly around the thick stack of lollipop sticks at either end.
Step 5
Pull a piece of cotton wool from your cotton wool ball and roll it around to make a snowball.
Step 6
Place the snowball on the longest end of the ‘cross’ stick, and press down on the shorter end using one hand.
Step 7
Using the other hand, press back on the snowball and then fire!
Watch Marvellous Marthy and download the free activity sheet today!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Paper aeroplane design
A project to make and find out how far a paper plane can fly
In this activity learners will make a paper plane to help them understand aerodynamics in action. They will also test it to see how far it will fly and the time it stays in the air.
This activity could be used as a main lesson activity to teach learners about modelling and prototyping, or part of a wider scheme of learning covering manufacturing processes and techniques. It could also be used as part of an introduction to aerodynamics.
Resources required:
A4 printed paper aeroplane templates
Stopwatches (to measure flight time during testing)
Download the free activity sheet below!
Download our activity sheet and other related resources for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation.
Please do share your highlights with us @IETeducation.
Microwaves and health
Explore the risks associated with exposure to microwaves
Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives.
Activity info, teachers’ notes and curriculum links
This engaging activity allows students to explore the hazards and risks associated with exposure to microwaves. A microwave monitor is used to measure the microwave radiation from a microwave oven and a working mobile phone at a range of distances.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Water treatment systems
Investigate the salinity of different water samples
Water is crucial to human life, but it can also be a killer.
Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases.
Activity info, teachers’ notes and curriculum links
In this practical activity students investigate the salinity of three different water samples using a multimeter. Students first calibrate their salination probe and test the salinity of their solutions. Students can be asked to suggest how errors might have appeared in their results and what could be done to minimise or eliminate them.
This activity can be used as an extension to the ‘Filtering water’ activity.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Changing perceptions with design
Developing a marketing and branding campaign for Pure Water
An essential part of a product’s identity is the logo that is used to represent it. In this activity, students will work on developing a ‘marketing and branding’ campaign for a drinking water product by Pure Water. The campaign will need to design the overall package for the scheme, including logos, slogans, adverts, podcasts, posters etc. As a class, brainstorm what the essential criteria are for an effective logo. Then participants generate a range of ideas select their best idea and develop this in a suitable form.
Activity info, teachers’ notes and curriculum links
This activity requires participants to apply understanding of creative thinking, product development and graphic design to a design and technology context.
Download the free activity sheet!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your classroom learning highlights with us @IETeducation
Tools/resources required
Projector/whiteboard
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
To watch the ‘Pure water’ video, please visit the IET Education website.
Robotics poster
Primary classroom poster looking at how the design of the Mars Curiosity enables it to explore the planet Mars effectively.
Download the single poster here or order a full set of posters for free from the IET Education website.
Calculate energy use at home
Calculating the energy used by different electrical appliances and devices within the home
In this activity learners will calculate the energy usage of different electrical appliances. They will first calculate the power consumption using P = I V, then use the results of these calculations to work out how much energy each uses in kilowatt hours (kWh).
This activity could be used as a main lesson activity to teach about electrical power and energy, and how each are calculated. It could also be used as part of a wider scheme of learning focussing on electricity and the National Grid or as an exercise to use mathematical skills in a practical context.
This is one of a series of resources developed in association with the National Grid ESO, to allow learners to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on calculating the energy usage of different appliances and considering how this could be reduced. National Grid ESO ensure that Great Britain has the essential energy it needs by ensuring supply meets demand every second of every day.
This activity is designed to take between 40-70 minutes.
Tools/resources required
Writing implements (pens or pencils)
Calculators
The engineering context
Engineers have a moral and ethical responsibility to ensure that their work is sustainable and that they do not negatively impact the environment. This includes reducing energy consumption wherever possible. As such, it is important that all engineers understand how products and systems are powered and how much energy they use.
Power engineering is a very important field which focusses on how energy is generated, transmitted and used by homes and businesses. There are lots of well-paid and rewarding careers available in this area.
Suggested learning outcomes
By the end of this free resource students will be able to calculate the power consumption of different appliances using P = I V; calculate the energy consumption of different appliances; and be able to show calculated data as part of a table.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Gear ratios
In this activity learners will carry out a practical investigation to investigate how spur gears work, including calculation of simple gear ratios and assembling models of simple gear trains.
Gears are used to change the speed at which something turns. A series of gears that turn each other are called a ‘gear train.’
This resource has been developed with the support of the Bugatti Trust Museum and Study Centre and focuses on the role of gears in a mechanism. The main activity involves making a series of spur gears to calculate gear ratios and see them working.
Activity info, teachers’ notes and curriculum links
This activity could be used as a main lesson activity, to introduce the concept of gears in D&T or the practical use of ratios in maths, or as part of a project/series of lessons creating a mechanised object.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Tools/resources required
• Scissors
• Glue sticks
• Sharp pencil
• Card and Split pins
• Blu Tack (for piercing the card safely)
• Cardboard (Alternative: foam board and thumb tacks)
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
How does a Sat Nav system work?
Learn about the technology behind satellite navigation systems and discuss the pros and cons of using them
Can your students consider how a GPS system functions and discuss the advantages and disadvantages of using them?
This activity is suitable for KS3 and KS4 and encourages students to undertake research and produce a visual display.
This activity is an engaging investigation into the uses of communication technology in the modern world.
This activity is an individual activity and could be run in an ICT suite to allow students to use the internet for research.
Distribute the Sat Nav handout to students. This handout gives some outline information about satellites and an un-annotated diagram. Students can cut out or copy the un-annotated diagram and add information to this to produce a visual display of how a Sat Nav system works.
There are a series of questions on the Sat Nav handout. Questions 1-4 are designed to get students to undertake research on the topic of satellites and their functionalities and capabilities.
This is a simple activity that will take approximately 30 minutes to complete.
How does a Sat Nav system work?
What we often refer to as ‘Sat Nav’ is properly called the Global Positioning System (GPS). This uses satellites that continually transmit a signal. They are like an accurate orbiting clock. The signal from at least three and up to seven satellites is received and compared by the Sat Nav device. Using some complicated maths, the Sat Nav device can work out not only where it is on the Earth’s surface, but at what altitude it is as well. The position information is compared with a map downloaded and stored by the Sat Nav device. The satellites tell you where you are, and the mapping hardware fills in the pictures of the road around you.
The satellites need to have a clear path through the air to the Sat Nav device – this is normally called a clear line of ‘sight’.
The engineering context
Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives.
Download the free How does a Sat Nav system work? activity sheet!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Changing perceptions with design 2
An engaging activity in which students will develop a marketing strategy and advertising materials for the product. It will be taught through teamwork mirroring the design process within a ‘design consultancy.’ Each team will pitch for the tender at the end of the unit, presenting ideas to the class. This activity could be taught in design & technology, with the emphasis on product design or graphics.
Exploded views
How to draw an exploded view
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within design and technology and maths. This resource focusses on drawing exploded views of products.
Different types of drawing are used to communicate different types of information. Exploded views show how the component parts of a product relate to each other. These are widely used to support the assembly of products, for maintenance activities and when building flat pack furniture at home. Producing an exploded view develops drawing skills, whilst simultaneously allowing concepts such as dimensions, proportion and scale to be introduced in a practical context.
In this activity learners will produce an exploded view drawing of a pen, working in proportion and ideally to scale. This could be used as a one-off activity, an extension to maths learning on scale, or linked to D&T activities such as product analysis or section drawing. It could also be used in conjunction with the IET primary poster – Exploded Views.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Design a kit for a national sports team
Consider smart or modern textile technologies when making a sports kit
This resource focusses on designing a modern, stylish kit for a national team that will be playing at the football World Cup.
This STEM activity is one of a series of resources designed to allow learners to use the theme of the football World Cup to develop their knowledge and skills in Design and Technology.
Students will consider the colours used in different national flags and existing kits. They will then produce their own design for a national team of their choice, which makes use of smart or modern textiles technologies.
Please do remember to share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Aerodynamics timeline
In this lesson, students will learn about the development of aerodynamics through history.
It’s an engaging starter activity where students will be introduced to the concepts behind aerodynamic design, including how simple shapes can be tested in a wind tunnel and through water.
Learners will explore the basic principles of aerodynamics by looking at familiar products (such as cars) that have been designed for speed. As part of the lesson, students will examine how these products have evolved and how aerodynamic principles have influenced these developments. They’ll be asked to identify common features across different products and understand how these features all contribute to speed.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science or design and technology (DT).
Activity: Learning about the history of aerodynamics
This activity will ask students to research images of a selection of cars and aeroplanes from the 20th and 21st centuries (without looking at exactly when they were made). Students will then try to arrange these images in chronological order and explain their decision-making process based on the aerodynamics of each vehicle.
Download our activity overview for a detailed lesson plan for teaching students about the history of aerodynamics.
The engineering context
From making the fastest Formula One car, to designing more fuel-efficient aeroplanes, aerodynamics is a fundamental skill for mechanical engineers. By exploring the evolution of cars and airplanes, students will develop an appreciation for how advancements in aerodynamics technology have shaped the look and design of many cars and aeroplanes over the years.
Suggested learning outcomes
Students will be able to identify trends in the development of aeroplanes and cars. They will gain an understanding of what influenced these developments and be able to explain the role of aerodynamics as part of this.
Download our classroom lesson plan and presentation for free.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation.